9 research outputs found

    On the constraints violation in forward dynamics of multibody systems

    Get PDF
    It is known that the dynamic equations of motion for constrained mechanical multibody systems are frequently formulated using the Newton-Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of partial differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. The classical resolution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is offered. The basic idea of the described approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as function of the Moore-Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations. The described methodology is embedded in the standard method to solve the equations of motion based on the technique of Lagrange multipliers. Finally, the effectiveness of the described methodology is demonstrated through the dynamic modeling and simulation of different planar and spatial multibody systems. The outcomes in terms of constraints violation at the position and velocity levels, conservation of the total energy and computational efficiency are analyzed and compared with those obtained with the standard Lagrange multipliers method, the Baumgarte stabilization method, the augmented Lagrangian formulation, the index-1 augmented Lagrangian and the coordinate partitioning method.The first author expresses his gratitude to the Portuguese Foundation for Science and Technology through the PhD grant (PD/BD/114154/2016). This work has been supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio

    A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation

    No full text
    Study Design: An iterative design process was used to obtain design parameters that satisfy both kinematic and dynamic requirements for the hand exoskeleton. This design was validated through experimental studies. Introduction: The success of hand rehabilitation after impairments depends on the timing, intensity, repetition, and frequency, as well as task-specific training. Considering the continuing constraints placed on therapist-led rehabilitation and need for better outcomes, robot-assisted rehabilitation has been explored. Soft robotic approaches have been implemented for a hand rehabilitation exoskeleton as they have more tolerance for alignment with biological joints than those of hard exoskeletons. Purpose of the Study: The purpose of the study was to design, develop, and validate a soft robotic exoskeleton for hand rehabilitation. Methods: A motion capture system validated the kinematics of the soft robotic digit attached on top of a human index finger. A pneumatic control system and algorithms were developed to operate the exoskeleton based on three therapeutic modes: continuous passive, active assistive, and active resistive motion. Pilot studies were carried out on one healthy and one poststroke participant using continuous passive motion and bilateral/bimanual therapy modes. Results: The soft robotic digits were able to produce required range of motion and accommodate for dorsal lengthening, with trajectories of the center of rotation of the soft robotic joints in close agreement with the center of rotation of the human finger joints. Discussion: The exoskeleton showed the robust performance of the robot in applying continuous passive motion and bilateral/bimanual therapy. Conclusions: This soft robotic exoskeleton is promising for assisting in the rehabilitation of the hand

    Soft Robotic Rehabilitation Exoskeleton (REHAB Glove) for Hand Therapy

    No full text
    This paper presents the design, control, and validation of a soft robotic exoskeleton system, the REHAB Glove, for hand rehabilitation. The system is comprised of five hybrid soft-andrigid robotic digits that apply controlled flexion and extension motion to fingers. The previous actuator design of the soft robotic digit was improved for kinematic compatibility with anatomical motions of the hand in relation to range of motion, center of rotation, and dorsal skin lengthening. The design was validated using motion capture and analysis. A position control algorithm, which controls finger angular trajectories (angular position and velocity), was developed based on motion sensor feedback. The operation of this algorithm was verified using a 90° digit tip trajectory with two angular velocities of 15°/sec and 30°/sec. A pilot study was carried out with five healthy individuals to evaluate the performance of the REHAB Glove in providing therapeutic schemes. The results show that the REHAB Glove is able to provide controlled motion compatible with the kinematics and dynamics of the human

    Kinematic Study of a Soft-and-Rigid Robotic Digit for Rehabilitation and Assistive Applications

    No full text
    This paper presents the kinematic study of a pneumatically actuated soft-and-rigid robotic digit designed to be used in exoskeleton-based hand rehabilitation and assistive applications. The soft-and-rigid robotic digit is comprised of three inflatable bellow-shaped structure sections (soft sections) and four semirigid sections in an alternating order which correspond to the anatomy of a human finger. The forward and backward bending motions at each soft section (joint) are generated by pressure and vacuum actuation, respectively. The goal here is to investigate the compatibility of the soft robotic digit\u27s kinematic parameters such as range of motion, center of rotation, and lengthening at the joints with the required anatomical motion of the human finger to ensure proper function and safe interaction. The soft robotic digits were fabricated using silicone rubber materials in a compression molding process for the experimental study. The kinematic parameters of both a human and soft robotic index finger were measured using a motion capture system. The obtained results show that the robotic digit was able to provide the required range of motion: 0-90° at the metacarpophalangeal (MCP) joint, 0-100° at the proximal interphalangeal (PIP) joint, and 0-70° at the distal interphalangeal (DIP) joint. Furthermore, the data show the center of rotation of each soft section (robotic joint) was remotely coincident with that of the corresponding index finger. The lengthening of the three soft sections of the robotic digit were measured to be 7mm, 7mm, and 2mm for the MCP, PIP, and DIP, respectively. The corresponding values for the dorsal skin lengthening of a human index finger is 11mm, 15mm, and 5mm and are longer than the achieved lengthening in the robotic digit
    corecore